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1 Introduction

One of the through lines of high school geometry is the exploration of triangles.
We have rigorously examined triangles in Euclidean geometry— but why do
we need to specify “Euclidean”? Isn’t there just the one geometry we have
come to know and love? As it turns out, there are numerous types of geometry,
some of which are easier to visualize than others. This paper aims to explore the
intriguing nature of triangles (and constructions derived from them) in spherical
and hyperbolic geometries. We begin by introducing spherical geometry and the
concept of axiomatic systems, then expand into the hyperbolic plane via the
examination its foundational axioms. We finish with an exploration of similarly
rigorous axioms in single elliptic geometry.

2 Spherical Geometry

Spherical geometry is a branch of mathematics applied in multiple fields includ-
ing astronomy and global navigation. For example, navigators use the sphere
to traverse the globe in the most direct and efficient ways possible while as-
tronomers can calculate the distance from our globe to other planets and stars.

Unlike a straight line in Euclidean geometry, the shortest path on the surface
of the sphere connecting two different points is a great circle, such as the equator
or a circle with the largest circumference of a sphere.

Definition 2.1. Circles on the sphere centered at the origin are called great
circles.

Great circles in spherical geometry are used much as straight lines are used
in Euclidean space. Unlike how lines in Euclidean space intersect in at most
one point, great circles always intersect at two opposite points called antipodal
points.

In Euclidean geometry, for every line k and a point P not on k, there exists
a parallel lines through P that does not intersect the line. However, clearly
something is different about lines on spheres— great circles always intersect, so
in this way there are no parallel lines on the sphere.
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Definition 2.2. The regions created by the intersection of two great circles are
called lunes.

Figure 1: Lune on a Sphere of angle θ.

When a third great circle with no common point of intersection to the other
lines is created, the four previous lunes become eight spherical triangles like in
the picture below.

Figure 2: Triangle formed by lunes on a sphere.

Question 2.3. What is the area of this triangle if the sphere has radius r?

This question will highlight an example of geometry where area is defined
differently than in the Euclidean setting, which will help us understand triangles
in hyperbolic geometry better.

Lemma 2.4. The area of a lune with angle α is

2αr2. (1)
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Proof. We know that the the area of a circle is 2πr2. We can pick the center of
the sphere point O depicted in Figure 1 and create a great circle. Let the top
and bottom of the sphere perpendicular to the great circles be the two antipodal
points of the lune. Let α be the angle of the lune in the circle (in radians). Since
2π is the degree measure of entire circle, α

2π is the angle of the lune proportional
to the entire circle.

Furthermore, we know that the surface area of a sphere is 4πr2. Hence,
using proportions, the surface area of the lune of angle α is

α

2π
· (4πr2) = 2αr2.

Theorem 2.5. The area of a spherical triangle is proportional to the difference
between its angle sum and π. More precisely, on a sphere with radius r, the area
of a spherical triangle with angle measures of α, β, and γ is (α+ β + γ − π)r2

(see Figure 2).

Proof. By equation (1), the area of these lunes are

Area(ABA′C) = 2απr2

Area(BAB′C) = 2βπr2

Area(CAC ′B) = 2γπr2.

The surface the three lunes cover is equal to half of the surface area of the
sphere because they cover a symmetric region. Furthermore, as the surface area
of a sphere is 4πr2, we have

2πr2 = Area(ABA′C) +Area(BAB′C) +Area(CAC ′B)− 2Area(△ABC)

2πr2 = 2αr2 + 2βr2 + 2γr2 − 2Area(△ABC)

using Lemma 2.4. Then,

2Area(△ABC) = 2αr2 + 2βr2 + 2γr2 − 2πr2

Area(△ABC) = (α+ β + γ − π)r2.

The main thing to note here is that triangles act very differently than on
Euclidean space. Rather than having an area depending solely on the side
lengths, we have that the area depends on the angles formed by the great circles.
Also note that the area always being non-negative implies that α+ β + γ ≥ π,
i.e. the angle sum of a triangle in spherical geometry is more than 180◦.
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3 Axiomatic Systems

The bedrock of understanding these different framings of geometry are differ-
ent axiomatic systems. They act as the basis for all geometric proofs within
geometry, and thus they must be thoroughly proven.

A characteristic difficulty with axiomatic systems is the problem of unde-
fined terms. These are terms that cannot be defined within the system, and
so an understanding of them rests on the general intuition of the student and
approximate visual or verbal descriptions. With our current understanding of
geometry, the only three necessarily undefined terms are point, line, and plane.
It is important to note that, while we do provide definitions for these terms,
they are still undefined within this systems because their definitions cannot be
derived from the other definitions in the axiomatic system.

In order to keep the following sections orderly, we will define our undefined
terms for Euclidean geometry as the following:

• A point is constituted as a location in space with no length, width, or area

• A line is constituted as an indefinitely long, straight length of space with
no width or area

• A plane is an indefinitely expansive, two-dimensional, flat surface with
length and width, but no height

Euclidean geometry, sometimes generalized as geometry that occurs on a flat
plane, is what is taught and studied in high school geometry. It is built on the
following five postulates (axioms) that form the axiomatic system of Euclidean
geometry:

Euclid has the following five main axioms for Euclidean geometry:

1. We can draw a straight line from any point to any other point.

2. We can “continue” a line segment continuously into a straight line.

3. We can construct a circle so that every point along the edge is equidistant
from the center.

4. The measure of right angles are always 90◦ and equal.

5. If we have a line intersecting two other lines at two distinct points, and
the sum of the measure of the interior angles formed between them is less
than π, then the lines will intersect on that side (depicted in Figure 3).

Most of these are fairly intuitive, and can even feel cyclical from where we
are with modern geometry; however, all five are integral to our understanding
of geometry on this plane. For years, those who studied Euclid’s first Five
Postulates, they reasoned that, while the first four were intuitive and stood
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independent from the others, the fifth seemed like it should be a theorem, not a
postulate: derived from the first four and unnecessary from the Let us examine
the fifth in greater detail. As it can be difficult to visualize, we will use the
following diagram to inform the exploration:

Figure 3: A visual representation of Euclid’s Fifth Postulate.

This visualization makes sense to us as we often perceive the world through
Euclidean Geometry, at least on a small scale. In Euclidean geometry, there
will always be only one line through point P that will not intersect k. However,
many years after Euclid’s death, people began asking the question:

Question 3.1. What if there could be more?

4 Hyperbolic Geometry

Giovanni Girolamo Saccheri, a mathematician of the early seventeenth- and
early eighteenth-centuries, was one of these questioners, and was unconvinced
that the Fifth Postulate was even necessary. In his efforts to prove the su-
perfluity of Euclid’s Fifth Postulate, he assumed the Postulate was false and
reached two conclusions that were, in his words: “repugnant to the nature of
the straight line.” One of his conclusions stated that there is a line through
point P would intersect k not once, but twice. The other stated that there ex-
isted two lines through P that would not intersect k at all. These, respectively,
are the characteristic axioms of spherical geometry and, particularly of interest,
hyperbolic geometry (Figure 5).

Axiom 4.1 (The Characteristic Axiom of Hyperbolic Geometry). Given a line
k and a point P not on k, there exists at least two lines m and l that do not
intersect k.
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Figure 4: The Characteristic Axiom of Hyperbolic Geometry (Axiom 4.1)

4.1 Pasch’s Axiom and Infinitely Many Lines

To gain an understanding of hyperbolic geometry, we must first begin with an
axiomatic system. The undefined terms relied on are point, line, on, between,
and congruent, and the axioms are the same as those above for Euclidean geome-
try, however replacing the Fifth postulate with Saccheri’s derived contradiction.

From these assumptions, we can start to piece together the properties of
hyperbolic geometry. One way to do this is by carrying over theorems and
axioms from Euclidean geometry and seeing how they change. For instance:
one interpretation of the Fifth Postulate, Pasch’s Axiom, translates well into
hyperbolic geometry and becomes the basis for a majority of derived hyperbolic
geometry.

Axiom 4.2 (Pasch’s Axiom). If a line enters a triangle through one side, it
will exit through either one of the opposite two sides or the opposite point.

Theorem 4.3. Given a line k and a point P not on k, there are infinitely many
lines that do not intersect k.

In Euclidean space, the axiom can be simplified to assumption that: if a
line enters a triangle through one side, it will not leave the triangle through the
same side. With our revised axioms, this carries over to hyperbolic space and
from it, we can construct the following proof:

Proof. Lines l and m are the two parallel lines to k, meeting at point P . Choos-
ing a point on k, A, and a point on l, B, construct a triangle △ABC. Line m
enters △ABC through point P and exits through point D, between A and B.
Defining point X as an arbitrary point on DB, meaning it could be any one of

infinitely many we can draw
←→
PX.

Now, working under this derivation, we can conclude that
←→
PX does not

intersect line k because, if it did, for instance at the hypothetical point Y , line
m would violate Pasch’s Axiom. Entering triangle △XY A at point D, it would
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Figure 5: Pasch’s Axiom in hyperbolic space.

have to exit through XY or Y A, but it already intersects
←→
PX (of which XY is a

part of) at P and— by definition— cannot intersect Y A because Y A is part of
line k, to which it is parallel. Therefore, we can work under the assumption that
there are infinitely many lines parallel to k that go through point P because of
the infinitely many points X between B and D.

4.2 Sensed parallels

As proven in Theorem 4.3, there are infinitely many lines on P that have no
points on k. In this way, there are infinitely many lines ‘parallel’ to line k that
pass through point P . However, this does not mean that every single parallel
line through point P is the same distance away from line k. In 2D Euclidean
space, we can imagine two parallel lines. As one begins tilting by a small degree,
it will eventually intersect at a point far away from the center of its rotation. As
the amount of rotation increases, the distance from the center of rotation to the
intersection of lines becomes closer, summarizing Hilbert’s axiomatic approach
to geometry and his parallel postulate.

Axiom 4.4. In the Euclidean plane there can be drawn through any point P ,
lying outside of a straight line k, one and only one straight line which does not
intersect the line k. This straight line is called the parallel to k through the given
point P .

In hyperbolic space, we can develop a similar picture. Using Axiom 4.1, we
can see that as a parallel line to k becomes closer and closer to line k, there is a
tipping point where the line cannot tilt any further without intersecting. This
line is called the sensed parallel.
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Definition 4.5. Given point P not on line k, the first line on P in each direction
that does not intersect k is the (right- or left-) sensed parallel to k at P. Other
lines on P that do not intersect k are called ultraparallel to k.

4.3 Angles of Parallelism

The angles of parallelism are used in hyperbolic geometry to determine the
angle of a sensed or an ultra parallel in hyperbolic geometry as it approaches
line k. This concept cannot be applied in Euclidean geometry since the angle
of parallelism is constant. In other words:

Definition 4.6. By constructing line segment
←→
AP ⊥ to k, in Axiom 4.1, the

acute angle formed by
←→
AP with l and m are the angles of parallelism at P

Theorem 4.7. If l and m are the two sensed parallels to k at P, they have the
same angle of parallelism.

Figure 6: Angles of parallelism.

Proof. This proof is similar to the characteristic axiom in the sense that sensed
parallels approach line k without intersecting. We let AP ⊥ k, and lines PB
and PC be the sensed parallel to k through P . Proving through contradiction,
let angles of parallelism differ, let, ∠ APB < ∠ APC. Inside ∠ APC, construct
∠ APD ∼= ∠ APB. Because line PC is a sensed parallel, line PD intersects k,
say at E, constructing △APE. Let F be on k with AF ∼= AE. By SAS, △
APF ∼= △ APE. But then ∠ APF ∼= ∠ APD ∼= △APB, meaning lines PF and
PB are the same by Hilbert’s axiom III-4. However, line PB is a sensed parallel
to k, so it cannot intersect k at F , which is a contradiction so their angles of
parallelism must be the same.
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From this proof we come to a conclusion vital to the future proofs presented
in the paper.

Corollary 4.8. All angles of parallelism are less than a right angle. Two lines
with a common perpendicular are ultraparallel.

Proof. The angle of parallelism is the angle a sensed parallel makes with the
perpendicular line so therefore the angle has to be less than 90◦. If the angle
was equal to 90◦, the two sensed parallels would be the same, contradicting the
characteristic axiom (Axiom 4.1).

Since hyperbolic space is hard to picture visually, we use models to depict
them more easily. For example, the Poincaré model uses a circular boundary as
a plane and semi-circular lines in Euclidean space as straight lines in hyperbolic.

4.4 Omega Triangles

When sensed parallels are introduced in their asymptotic nature, it prompts the
question:

Question 4.9. Could one construct a triangle using sensed parallels as two
sides?

If we consider sensed parallels as “meeting at infinity” rather than getting
infinitely close, then we deduce the same definition that the framers of hyperbolic
geometry came to: the omega point, an imaginary point at the infinite limit
of the hyperbolic plane. Using one omega point two rays leading to it with
corresponding points A and B, we can form an omega triangle △ABΩ, pictured
below using the Poincaré model of the hyperbolic plane:

Figure 7: An omega triangle in the Poincaré model for hyperbolic space, the
omega point here represented by Π.

As with parallels, some postulates carry over from Euclidean geometry. How-
ever, there are a couple more interesting theorems worth exploring such as the
following:
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Theorem 4.10. The measure of an exterior angle of an omega triangle is
greater than the measure of the opposite interior angle.

Figure 8: Exterior angles of omega triangles.

Proof. Consider the construction in figure 8. We prove ∠CAΠ > ∠ABΠ
through contradiction.

Suppose for the sake of contradiction that ∠CAΠ < ∠ABΠ. We form ∠ABZ

inside of ∠ABΠ such that ∠ABZ ∼= ∠CAΠ. Then, we say
←→
BZ intersects

−→
AΠ at

point D because
−−→
BΠ is sensed parallel to

−→
AΠ at B. However, then ∠CAΠ is an

exterior angle to to the ordinary triangle△ABD with the opposite interior angle
of ∠ABD, which is congruent to ∠CAΠ. This contradicts Euclid’s Sixteenth
Postulate, which dictates that the exterior angle of a triangle is greater than
either remote interior angle.

Furthermore, suppose for the sake of contradiction that ∠CAΘ ∼= ∠ABΘ.
Let E be the midpoint of AB and construct DE such it lies perpendicular to←→
AΘ. As mentioned in the above section, the angle of parallelism is acute so we

can assume D is not A. If we construct F on
←→
BΘ such that FB ∼= AD and

F and D are on opposite sides of
←→
AB, as shown in Figure 8, we construct two

congruent triangles by SAS: △FBE and △DAE, assuming ∠FBE ∼= ∠DAE.
From this we derive that, because ∠ADE is a right angle, ∠BFE must be as
well. However, this presents the contradiction that the angle of parallelism for←→
FΘ to

←→
DΘ must be right, which contradicts the corollary that the angle of

parallelism must be less than a right angle. Since both of the other options are
contradictions, the theorem is proved.

From here, we can begin an exploration of congruency in omega triangles.
Because the sides extending to infinity are infinitely long and the angle where
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they meet is infinitely small, the only points of interest are the two angles and
the side between them.

Definition 4.11. Two omega triangles, △ABΩ and △CDΓ, are congruent if
and only if AB ∼= CD, ∠BAΩ ∼= ∠DCΓ, and ∠ABΩ ∼= ∠CDΓ.

4.5 Saccheri Quadrilaterals

One of Saccheri’s explorations in hyperbolic space led to the definition of Sac-
cheri quadrilaterals. Discovered centuries earlier by the Persian mathematician
Omar Khayyam (albeit not named after him), the definition is as follows:

Definition 4.12. A Saccheri quadrilateral has two opposite congruent sides
perpendicular to one of the two other sides. The perpendicular is the base and
the fourth side is the summit.

Saccheri quadrilaterals can exist in hyperbolic and spherical space, with
concave and convex summits respectively, however we will focus only on the
hyperbolic instance in this paper. Consider the following theorems:

Theorem 4.13. The summit angles of a Saccheri quadrilateral are congruent.
The base and summit are perpendicular to the line on their midpoints.

Proof. Let AB be the base of Saccheri quadrilateral ABCD and AC and BD
be the diagonals, as pictured in the first diagram in Figure 10. Thus it follows
that △ABC ∼= △BAD by SAS and that △ADC ∼= △BCD. From this we can
conclude that summit angles ∠ADC ∼= ∠BCD. Naming points E and F as the
midpoints of AB and CD, respectively. We can follow a similar line of logic
stating that △DAE ∼= △CBE by SAS and that △DEF ∼= △CEF by SSS.
This means that ∠DEF ∼= ∠CEF and EF ⊥ CD and AB because the angles
form a straight angle.

Figure 9: Saccheri quadrilaterals.
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Theorem 4.14. The summit angles of a Saccheri quadrilateral are acute.

Proof. Sensed parallels to lines
←→
AB,

←→
CΠ and

←→
DΠ, intersect Saccheri quadrilat-

eral ABCD with base AB at C and D, forming ∠EDΠ with point E on line←→
CD. The angle ∠EDΠ is the exterior angle of omega triangle△DCΠ, making it
larger than ∠DCΠ. Because AD ∼= BC and ∠ΠAD ∼= ∠ΠBC, we can infer that
the corresponding omega triangles are congruent, meaning ∠ADΠ ∼= ∠BCΠ be-
cause they are the angles of parallelism. Thus, ∠EDA > ∠DCB, and, since
the summit angles are equal, ∠EDA is also bigger than ∠CDA. The smaller is

acute because line
←→
CD is straight.

4.6 Angle sum of a Triangle

In Euclidean space, it has been proven that the sum of the interior angles of a
triangle always adds up to π. In hyperbolic space, the sum of the interior angles
of a triangle is less than π.

Theorem 4.15. The angle sum of a triangle is less than π.

Figure 10: The angle sum of a triangle is less than π.

Proof. In △ABC, let D be midpoint of AB and E be midpoint of AC. Con-
struct perpendiculars AF,BG, CH,DE. We claim three cases of the geometric
configuration of △ABC.

Case 1) ∠ABC < ∠GBC. Case 1 corresponds to Figure 4.25. We know that
AD ∼= BD, ∠AFD = ∠BGD = 90◦, and ∠ADF = ∠BDG. Hence by
AAS, △ADF ∼= △BDG. Similarly, by AAS △AEF ∼= △CEH. The
right angles at G and H with the congruent sides show that GHCB is a
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Saccheri quadrilateral. Because of Theorem 4.12, the summit angles of a
Saccheri triangle are acute or < 180◦. As follows from AAS, ∠DAF =
∠GBD and ∠EAF = ∠ECH.

Hence, ∠DAF+∠DBC = ∠GBC and ∠EAF+∠ECH = ∠HCB. There-
fore, ∠GBC + ∠HCB < 180◦.

Case 2) ∠ABC = ∠GBC. Case 2 corresponds to Figure 4.26. Similar to Case
1, since △AED ∼= △EHC, ∠EAD = ∠ECH. Since ∠ABC is already a
summit angle and ∠EAD is congruent to 1, △ is less than 180◦.

Case 3) ∠ABC > ∠GBC. Case 3 corresponds to Figure 4.27. By AAS, △AFD ∼=
△BGD. To prove triangle has angle sum less than π we need to prove it
is equal to summit angles of triangle. Following Figure 4.27, we have

∠ABC + ∠BAC + ∠ACB = ∠2 + ∠1 + ∠4 + ∠5

= ∠2 + ∠3 + ∠4 + ∠5

= ∠2 + ∠6 + ∠5

= ∠GBC + ∠HCB.

Therefore, in all three cases, we have shown that the angle sum of a triangle in
hyperbolic geometry are less than π.

We have only scratched the surface of hyperbolic geometry. Just like Eu-
clidean geometry, there are multiple distance and area formulas that we will not
discuss in this paper. When we removed Euclid’s Fifth postulate, we were able
to define the characteristic axiom of hyperbolic geometry. In a similar way, we
can define the characteristic axiom for spherical geometry, making it a bit more
rigorous.

5 Single Elliptic Geometry

In the 1800s, spherical geometry was just thought of as a subsection of Euclidean
geometry (after all, a circle is a portion of the plane, and the sphere is a portion
of 3D Euclidean space). However, they are very different (as we have seen so
far by the area of a triangle in spherical geometry. We may yet again replace
Euclid’s fifth postulate with a new characteristic axiom.

Axiom 5.1 (The Characteristic Axiom of Spherical Geometry). Two lines (in-
terpreted as great circles) always intersect in two points

In 1874, Felix Klein created a modified spherical geometry, called single
elliptic geometry, to obey the similar principles of Euclidean and spherical spaces
where two points determine a line. One common model describes a “borderless”
hemispherical geometry, where lines continue from the point opposite the point
on the edge that they exited; “exiting” through one edge and then continuing
from the antipodal point to where it “exited”, yet technically unbroken. Klein

13



referred to this as single elliptic geometry. Thus, the characteristic axiom for
single elliptic geometry states that:

Axiom 5.2 (The Characteristic Axiom of Single Elliptic Geometry). Two dis-
tinct lines intersect in exactly one point.

This is because the hemisphere has no true great circles– the closest being the
edge of the space which is discounted because it doesn’t exist, it just “teleports”
the continuation of the line to the other side. As such, no line can exist on the
edge. Therefore the only lines that can exist are ones with an angle to the edge
that does not equal 0 or π, and those can intersect only at one point.

Although spherical and single elliptic are different geometries, they share
many theorems in common. For instance, the angle sum of a triangle is greater
than π, and triangles can have three obtuse angles (note that this implies that
the maximum angle sum is < π.

We can also produce Saccheri quadrilaterals in spherical geometry. We ac-
cept that Theorem 4.7 holds in spherical space and propose an integral new
theorem for spherical geometry:

Theorem 5.3. In single elliptic geometry, all lines perpendicular to a given
line intersect in one point.

Proof. Constructing spherical Saccheri quadrilateral ABCD, we accept that
EF ⊥ AB and CD. Because of the characteristic axiom of single elliptic ge-

ometry, we say that
←→
AB and

←→
CD intersect in two opposing points: P and P ′,

and that d(A,P ) = d(B,P ) and d(C,P ) = d(D,P ). To begin a contradiction,
we say that △ADP ∼= △BCP ′ by SAS. It follows that ∠BCP ′ ∼= ∠ADP and
is supplementary to ∠BCD. With Euclid’s Sixteenth Postulate, we can then

say
←−→
CP ′ is

←→
CD, which results in the intersection of

←→
AB and

←→
CD. This means

that point P is point P ′, and thus the assumption about distance holds. We
can also infer that E and F represent the maximum distance two points can be
separated, and thus form an isosceles triangle: △EFP with d(E,P ) = d(F, P )
by Euclid’s Sixth Postulate.

We can also come to the following conclusion about spherical Saccheri quadri-
laterals:

Theorem 5.4. In single elliptic geometry, the summit angles of a Saccheri
quadrilateral are obtuse.

Proof. Again constructing Saccheri quadrilateral ABCD, we construct
←→
DG such

that it lies perpendicular to AD. Point Q is the intersection of
←→
DG with

←→
AB.

From this, we can posit that d(A,P ) ≤ d(A,Q), because point Q is the farthest
point from A, as proven in Theorem 5.2. If we were to accept that the distances
were equal, we would construct a trivial quadrilateral because P would equal

Q and, following from this, A = E and A = B. So d(A,P ) < d(A,Q) and
←→
DP

enters △QDA at D, so ∠PDA < ∠QDA. Since ∠QDA is right, the summit
angle ∠ADC— the supplementary angle— must be obtuse.
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6 Summary and Conclusion

Geometry is not set in stone and was not completely understood by Euclid two-
thousand years ago. It is a constantly changing field that, for all we know, could
be totally different in the next two-thousand years. Contemporary high school
geometry spends less time focusing on developing axiomatic systems since proofs
must directly and carefully follow the axioms.

One mathematician, David Hilbert, avoided writing a text with all of the
familiar and proven theorems but instead wanted to assume as little as possible
while proving all Euclidean theorems. However, the consequences of this idea
were long and rigorous proofs that were hard to follow, making it incompatible
as an introduction to geometry. It took Hilbert eleven axioms to define the
properties of a line, something that the high school axiomatic system does in
four. While we want to assume as little as possible in order to keep theorems
clear and concise, there is a tipping point as to how many axioms are necessary
for non-rigorous and straightforward proofs.

Through rigorous axiomatic systems, we can define various geometries by
characteristic axioms. The theorems that follow present an interesting mixture
between Euclid’s constructive and Hilbert’s rigorous methodology.
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